

Extatic welcome week, 22/9/2017

An Introduction to Laser-driven X-ray Sources

Jaroslav Nejdl Jaroslav. Nejdl@eli-beams.eu

projekt podporovaný:

EVROPSKÁ UNIE EVROPSKÝ FOND PRO REGIONÁLNÍ ROZVOJ NVESTICE DO VAŠÍ BUDOUCNOSTI

Motivation

Study nature in smaller spatial and shorter time scales **Spatial resolution** (Rayleigh) $d = 0.61 \frac{\lambda}{NA}$, de Broglie: $\lambda = \frac{h}{p}$

Temporal resolution \sim pulse duration in pump-probe experiments

Motivation

Need for short X-ray pulses

Synchrotrons: 100 ps (fs)

XFEL (X-ray Free Electron Lasers): >10 fs

Superbright, **but** large \Rightarrow **EEEE** \Rightarrow limitted ac & difficult synchronization with pump pulses

laser driven X-ray sources

- Origin of Electromagnetic radiation
- Laser-driven sources of short-wavelength radiation
	- High-order harmonic generation from gas
	- Plasma-based X-ray lasers
	- Plasma X-ray sources
	- Sources based on laser driven electron beams
		- Plasma betatron
		- Inverse Compton source

Origin of EM radiation

Microscopically: accelerated motion of charge

• Free:

• Bound: radiative (allowed/dipole) transitions **[???](C:/Users/jaroslav.nejdl/Dropbox/X-ray day/radiating-charge_en.jar)**

Origin of EM radiation

Mostly electrons being employed in this spectral range (large e/m ratio) $dE/dz \propto E^4/(m^4R^2)$

Types of radiative transitions (QM point of view):

1) Free-free (classical accelerated charge)

• Sources employing relativistic electron beams (undulator, betatron, Compton)

• Laser plasma source (bremsstrahlung)

2) Free-bound

- High-order harmonic generation
- Laser plasma source (radiative recombination)

3) Bound-bound

- Soft X-ray lasers (stimulated emission)
- Laser plasma source (inner-shell transitions e.g. K_{α})

High-order harmonic generation (HHG)

HHG in gas

 $C)$

f)

 -2

O

 r [a.u.]

 $\overline{2}$

Recombination

 $hv-i$ time Θ

E Field

• Interaction of linearly polarized intense laser pulse with matter (valence electron)

HHG in gas

• Quasi-monochromatic radiation + centro-symmetrical medium → **odd harmonics only**

• Microscopic analysis Dipole momentum of a single atom

$$
E_{\text{cutoff}} \approx I_p + 3.17 U_p
$$

• Macroscopic analysis absorbtion, phase-matching, diffraction

Electron density $|\psi(x,t)|^2$ http://www.orc.soton.ac.uk/xray.html

• $\lambda = 800$ nm $\rightarrow T = 2.7$ fs

 $\rightarrow h\nu = 1.55$ eV

100fs laser pulse with short medium: attosecond pulse train

Prof. R. Trebino, Lectures on Ultrafast Optics, Georgia Institute of Technology

Prof. R. Trebino, Lectures on Ultrafast Optics, Georgia Institute of Technology

d

 1.0

Soft X-ray

grating

 10

Phase (rad)

ARTICLE

DOI: 10.1038/s41467-017-00321-0

Published August 4th 2017

53-attosecond X-ray pulses reach the carbon K-edge

Jie Li¹, Xiaoming Ren¹, Yanchun Yin¹, Kun Zhao^{1,2}, Andrew Chew¹, Yan Cheng¹, Eric Cunningham¹, Yang Wang¹, Shuyuan Hu¹, Yi Wu¹, Michael Chini³ & Zenghu Chang^{1,3}

The motion of electrons in the microcosm occurs on a time scale set by the atomic unit of time-24 attoseconds. Attosecond pulses at photon energies corresponding to the fundamental absorption edges of matter, which lie in the soft X-ray regime above 200 eV, permit the probing of electronic excitation, chemical state, and atomic structure. Here we demonstrate a soft X-ray pulse duration of 53 as and single pulse streaking reaching the carbon K-absorption edge (284 eV) by utilizing intense two-cycle driving pulses near 1.8-um center wavelength. Such pulses permit studies of electron dynamics in live biological samples and next-generation electronic materials such as diamond.

Focusing

lens

Neon gas cell

Toroidal

mirror

1.5 mJ.12 fs.

1.2-2.2 um. CEP stable

532 nm

Beam

splitter

Iris

Polarization

gating optics

OPEN

Helium (neon)

gas jet

Hole

mirror

Photodiode

(removable)

Period of an electron in Bohr's orbital of hydrogen: $T= 152$ as

Period of vibration of H_2 $T = 8$ fs

- Employ radiative transitions of multiply ionized matter
	- Energy difference between levels increases with the charge
	- Gain medium is a narrow column of hot highly ionized plasma

- Ex] hydrogen-like ion (H-like)
- *Z* proton number
- *nⁱ –* principal quantum number
- τ lifetime of upper level

H-like C = C⁺⁵ = C VI (spectroscopical notation):
transition 2p - 1s:
$$
\hbar \omega = 367 \text{eV}
$$
, $\lambda = 3.4 \text{ nm}$, $\tau = 1.2 \text{ ps}$

$$
E_{u} - E_{l} = (13.6 \text{ eV}) Z^{2} \left(\frac{1}{n_{l}^{2}} - \frac{1}{n_{u}^{2}} \right)
$$

$$
\hbar\omega\!\propto\!Z^2,\;\;\tau\!\propto\!1/Z^4
$$

Einstein's coefficients

A,B depends only on the quantum system \Rightarrow relation (1) is valid even outside equilibrium

Pumping intensity is proportional to $1/\lambda^4$ \Rightarrow high pump power for shorter wavelengths – possible only in hot dense plasma

Due to short lifetimes of the gain, nonexistence of highly reflecting mirrors in XUV/x-ray and agressive plasma (damages nearby optics) Laser resonator (cavity) cannot be used

> We rely on Amplified Spontaneous Emission (**ASE**) (amplified noise – effects on wavefront, coherence…)

 \Rightarrow Long narrow column of gain medium

Source: http://spectr-w3.snz.ru

Figure 11. Ion abundance as a function of the electron temperature for tin plasma.

H. Daido, Rep. Prog. Phys. **65** (2002) 1513–1576.

Ne and Ni-like ions are present for wide temperature ranges.

Collisional excitation

Ne-like ions Ni-like ions

Fast depletion of the lower lasing level

Low quantum efficiency pumping: transition between shells (Ne-like:2-3 Ni-like 3-4) Lasing: in a shell (Ne-like: 3p-3s; Ni-like: 4d-4p)

eli Me-like Zn XRL @ 21.2 nm (1 shot/30min)

Quasi-steady state (normal incidence pumping) Prepulse (2J) and main pulse (500J) of ASTERIX focused down to a line(150µm) on a 3cm-long Zn target

- Energy 4-10mJ @ 21.2nm $(\Delta\lambda/\lambda \approx 5x10^{-5})$
- Pulse length 150ps
- Beam divergence 3.5×5.5mrad

Ni-like ions:

Suitable for shorter λ (faster pumping)

Usually short gain duration– Faster (transient) pumping required Space overlap of pumping with generated radiation

- **Travelling wave**
	- Step mirror
	- Tilt of the compressor grating

- Longitudinal pumping (gas target)
- GRazing Incidence Pumping

J. Rocca, Colo. State U. euverc.colostate.edu

eli $\langle\langle\rangle\rangle\langle\rangle$ **GRIP Ni-like Mo XRL@ 18.9nm (10Hz)**

HHG seed amplified in plasma amplifier (XRL)

Laser chain (Master Oscillator Power Amplifier) in XUV

Strong source of fully coherent radiation in XUV/soft x-ray

25th harmonic of Ti:S laser + Ne-like titan, λ =32.6nm 43th harmonic + Ni-like molybden, λ =18.9nm 59th harmonic + Ni-like silver, λ =13.9nm 59th harmonic + Ni-like cadmium, λ =13.2nm

Plasma X-ray source (Ka source)

LLNL Science and Technology Review, October 2005

- Creation of "hot" electrons by interaction of intense laser pulse with matter $(I > 10^{16} \,\mathrm{Wcm}^{-2})$ $T_h \propto I \lambda^2$
- Energetic electrons are decelerated in the target
	- generation of bremsstrahlung and characteristic radiation

• Moseley's law: a good approximation of line energy

$$
E_{K\alpha} \approx 10.2 \text{eV} \times (Z - 1)^2
$$

$$
E_{L\alpha} \propto (Z - 7.4)^2
$$

• Tuning parameters of interaction (*I, prepulse*) \Rightarrow strong K- α line

- Incoherent, polychromatic
- Isotropic emission (4π)
- Short pulse duration (\sim 100 fs)

• There is an optimum driving intensity for given element

Reich et al. PRL **84** 4846 (2000)

$\left| \mathbf{d}\right|$ Radiation of laser-driven relativistic electron beams

http://loa.ensta-paristech.fr/

eli Radiation of relativistic e⁻ beams

- Electron acceleration in laser plasma
	- Plasma wave behind the laser pulse
	- Huge E-filed >100 GV/m possible (conventional RF accelerators <0.1GV/m)

E. Esarey *et al.* Rev. Mod. Phys. **81**, p. 1229 (2009)

- Electron acceleration in laser plasma
	- Plasma wave behind the laser pulse
	- Huge E-filed >100 GV/m possible (conventional RF accelerators <0.1GV/m)

Radiation of relativistic e⁻ beams

 w_0 *c*

0

 $2\sqrt{a_0}$

 $\omega_0 = \frac{G \Omega_0}{m_c c} \approx 0.855 \sqrt{I_{[10^{18} W/cm^2]} \times \lambda_{L \mu m_1}^2}$

 $a_0 = \frac{eI_0}{m} \approx 0.855 \sqrt{I_{[10^{18}W/cm^2]} \times \lambda_{L[\mu]}^2}$

I

 $\tau\approx\frac{\pi}{2}$

e

 $m_e c$

eA

 $a_0 \quad w_p$ \approx

• Electron acceleration in laser plasma $a_0 = \frac{eA_0}{m} \approx 0.855 \sqrt{I_{[10^{18}W/cm^2]}\times \lambda_{12}^2}$

edi

- If the parameters are set right: bubble regime
	- Focus size and intensity vs. plasma density
	- Laser pulse duration vs. plasma density

 a_0 >2 \Rightarrow ion cavity (no electrons) behind the laser pulse $\omega_{_p}$

wavebreaking or other injection mechanism $-$ acceleration of e^-

eli Radiation of relativistic e⁻ beams beamlines

Rel. e^- (with Lorentz factor γ) in (periodic) magnetic field B_0

eti $()))$ Radiation of relativistic e⁻ beams beamlines

• Besides the longitudinal there is also transverse field

 \Rightarrow Oscillations of electron beam \Rightarrow RADIATION

eli Radiation of relativistic e⁻ beams beamlines

• **Betatron source parameters**

Electron period: Strength parameter: Critical energy:

Betatron frequency:

$$
\lambda_u = \sqrt{2\gamma(t)} \lambda_p
$$

\n
$$
K(t) = r_\beta(t) k_p \sqrt{\gamma(t) / 2}
$$

\n
$$
E_c = \frac{3}{2} K \gamma^2 \hbar \omega_\beta
$$

\n
$$
\omega_\beta = \omega_p / \sqrt{2\gamma}
$$
Be

Acceleration length: Normalized vector potential: Undulator strength parameter: Betatron critical energy: Number of photons:

$$
L_{acc} = 3T = 12r_{\beta}
$$

\n
$$
a_0 = 0.855\sqrt{I[10^{18} W/cm^2] \times \lambda_L^2[\mu m]}
$$

\n
$$
K = 1.33 \times 10^{-10} \sqrt{\gamma n_e [cm^{-3}]} r_{\beta}[\mu m]
$$

\n
$$
E_C[eV] = 5.25 \times 10^{-21} \gamma^2 n_e [cm^{-3}] r_{\beta}[\mu m]
$$

\n
$$
N_{\gamma} = 3.31 \times 10^{-2} K N_e L_{acc}/T
$$

• **Thomson back-scattering** (inverse Compton scattering)

Interaction of e- with an intense laser pulse

Radiation of relativistic e⁻ beams beamlines

- **Thomson back-scattering (inverse Compton source)**
- very hard radiation (up to MeV) $\omega_{\chi} \leq 4 \gamma^2 \omega_L$ $\leq 4\gamma^2$

eli

eti Radiation of relativistic e⁻ beams

• **Thomson back-scattering (inverse Compton source)**

• low intensity limit $(a_0<1)$ $N_\gamma \simeq 1.53 \cdot 10^{-2} \cdot a_0^2$ (b) Corde 2013 et. al.

Typical parameters of the sources

Fyzikální ústav AV ČR, v. v. i. Na Slovance 2 182 21 Praha 8 info@eli-beams.eu www.eli-beams.eu

THANK YOU FOR YOUR ATTENTION

Jaroslav.Nejdl@eli-beams.eu

projekt podporovaný:

FVROPSKÁ UNIF EVROPSKÝ FOND PRO REGIONÁLNÍ ROZVOJ **INVESTICE DO VAŠÍ BUDOUCNOSTI**

eli

 $\left|\left|\left|\right|\right|\right|\right|$

Facility layout and laser drivers for X-ray sources

Laser-driven x-ray sources : several approaches

Coherent Diffractive Imaging (CDI), Atomic, Molecular and Optical (AMO) Science, Soft X-ray Materials Science, X-ray phase contrast imaging, X-ray Diffraction and spectroscopy, WDM

See the J. Andreasson talk on WED

E1 experimental hall

Experimental Hall 1 Material & Biomolecular Applications

Plasma X-ray Source (PXS): femtosecond X-ray tube

Characteristics

4π sr emission, 3 – 30 keV line + continuous spectra 100s femtosecond pulses 10s μm spot size

Applications

Time-resolved X-ray diffraction X-ray Absorption Spectroscopy Small- angle X-ray scattering X-ray Imaging Pulsed radiolysis

High-order harmonic Beamline

GOAL: high flux ultra-short pulses of tunable coherent XUV radiation

- High energy kHz laser driver (L1: up to 100mJ in 20fs)
- \Rightarrow **long focusing** \Leftrightarrow big generating volume

and/or **two color driver** (50mJ IR, ~30mJ blue)

HHG Beamline

Two output arms:

- **Straight arm**: high flux output: CDI, AMO…
- **Side arm**: monochromatized output: Material sciences (Elipsometry…)

fs synchronization with PXS → coherent XUV and incoherent X-rays

HHG Expected output parameters

Versatility / tunability

- Several focusing geometries & driving schemes: maximize eff. at given wavelength range
- Wavelength fine-tuning by changing chirp of the driver
- Polarization state of XUV by changing polarization of $\omega/2\omega$ drivers

Betatron/Compton beamline in E2

10 Hz Betatron/Compton sources in E2

Radiation from laser-driven relativistic electron beam (1 GeV, 100 pC)

Betatron radiation Compton back-scattering

100 keV range

10⁸ photons per shot Source size : 2-5 µm Divergence : <10 mrad **1-5 MeV range** 10⁸ photons per shot Source size 2-5 µm Divergence : <20 mrad

Betatron/Compton beamline in E2

10 Hz Betatron/Compton target chamber

Radiation shielding in E2

4 hours operation at 10 Hz (e-beam 200 pC, 1 GeV) $\qquad \qquad$ 0.1 to 1 µSv per day outside E2

Towards laser-driven XFEL in the E5 hall **Laser-driven Undulator X-ray source (LUX) See L. Přibyl's talk tomorrow**

Fyzikální ústav AV ČR, v. v. i. Na Slovance 2 182 21 Praha 8 info@eli-beams.eu www.eli-beams.eu

THANK YOU FOR YOUR ATTENTION

Jaroslav.Nejdl@eli-beams.eu

projekt podporovaný:

FVROPSKÁ UNIF EVROPSKÝ FOND PRO REGIONÁLNÍ ROZVOJ **INVESTICE DO VAŠÍ BUDOUCNOSTI**

